您现在的位置:首页 > 行测 > 数量关系 > 数学运算 >

行测指导:一元二次函数极值问题

2020-06-30 09:51:09| 来源:中公教育刘钊

近年来行测考试中的数量关系部分的题目虽然考点比较多也相对较难,但是其中也有些题目是比较容易掌握的,经过学习一些方法就可以从容应对这些题目。今天中公教育专家为考生介绍这样一种题型——一元二次函数极值问题

一、什么是一元二次函数极值问题

二、例题精讲

【例1】:某商店出售A商品,若每天卖100件,则每件可获利6元。根据经验,若A商品每件涨1元钱,每天就少卖10件。为使每天获利最大化,A商品应提价:

A.6元 B.4元 C.2元 D.10元

方法二:假设每件提价x元、每天少卖10x件,总利润=(6+x)×(100-10x)=(6+x)×(10-x)×10,此时发现(6+x)与(10-x)的和值为16即和定,所以当6+x=10-x,即x=2时乘积取得最大值,也是获利最大。故本题选C。

注意:两种方法比较后者不需要过多的计算,所以这种问题一般用均值不等式求解更方便,但是一定要能够找到和定或积定的前提,一般情况下,为了保证和定可以将方程中的x的系数变成相反数。

【例2】:某村民要在屋顶建造一个长方体无盖贮水池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么要造一个深为3米容积为48立方米的无盖贮水池最低造价是多少元?

A.6460 B.7200 C.8160 D.9600

【答案】C。中公解析:求水池最低造价,根据题干条件可知水池造价=池地造价+池壁造价。而面积×单价就可以表示各部分造价。底面积48÷3=16平方米,设长和宽分别为a、b,ab=16,池壁面积为2×(3a+3b)。因此水池造价=16×150+2×(3a+3b)×120=2400+720×(a+b)。当a+b最小造价也就最低。ab=16乘积一定,根据“积定,差小,和小”可得当a=b=4时和值最小。因此,最低造价为2400+720×(4+4)=2400+5760=8160元,故本题选C。

中公教育专家提醒大家:解决这类一元二次函数极值问题,一般情况下差小就是保证两者相等,但是也有一些题干条件取不到相等数值,这时候就要结合条件取最接近数值。

注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。
(责任编辑:张珅)

推荐课程

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

明升体育m88官方网站工具
图书